imgplot = plt.imshow(img)
lum_img = img[:, :, 0]
# This is array slicing. You can read more in the `Numpy tutorial
# <https://numpy.org/doc/stable/user/quickstart.html>`_.
plt.imshow(lum_img)
# Output:
# <matplotlib.image.AxesImage object at 0x7f216cf2a0d0>
plt.imshow(lum_img, cmap="hot")
# Output:
# <matplotlib.image.AxesImage object at 0x7f217caf35b0>
from PIL import Image
img = Image.open('../../doc/_static/stinkbug.png')
img.thumbnail((64, 64), Image.ANTIALIAS) # resizes image in-place
imgplot = plt.imshow(img)
plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k')
# Output:
# (array([2.000e+00, 2.000e+00, 3.000e+00, 3.000e+00, 2.000e+00, 2.000e+00,
# 3.000e+00, 1.000e+00, 7.000e+00, 9.000e+00, 7.000e+00, 2.000e+00,
# 7.000e+00, 1.000e+01, 1.100e+01, 1.500e+01, 1.400e+01, 2.700e+01,
# 2.100e+01, 2.400e+01, 1.400e+01, 3.100e+01, 2.900e+01, 2.800e+01,
# 2.400e+01, 2.400e+01, 4.000e+01, 2.600e+01, 5.200e+01, 3.900e+01,
# 5.700e+01, 4.600e+01, 8.400e+01, 7.600e+01, 8.900e+01, 8.000e+01,
# 1.060e+02, 1.130e+02, 1.120e+02, 9.000e+01, 1.160e+02, 1.090e+02,
# 1.270e+02, 1.350e+02, 9.800e+01, 1.310e+02, 1.230e+02, 1.110e+02,
# 1.230e+02, 1.160e+02, 1.010e+02, 1.170e+02, 1.000e+02, 1.010e+02,
# 9.000e+01, 1.060e+02, 1.260e+02, 1.040e+02, 1.070e+02, 1.110e+02,
# 1.380e+02, 1.000e+02, 1.340e+02, 1.210e+02, 1.400e+02, 1.320e+02,
# 1.390e+02, 1.160e+02, 1.330e+02, 1.180e+02, 1.080e+02, 1.170e+02,
# 1.280e+02, 1.200e+02, 1.210e+02, 1.100e+02, 1.160e+02, 1.180e+02,
# 9.700e+01, 9.700e+01, 1.140e+02, 1.070e+02, 1.170e+02, 8.700e+01,
# 1.070e+02, 9.800e+01, 1.040e+02, 1.120e+02, 1.110e+02, 1.180e+02,
# 1.240e+02, 1.340e+02, 1.200e+02, 1.410e+02, 1.520e+02, 1.360e+02,
# 1.610e+02, 1.380e+02, 1.620e+02, 1.570e+02, 1.350e+02, 1.470e+02,
# 1.690e+02, 1.710e+02, 1.820e+02, 1.980e+02, 1.970e+02, 2.060e+02,
# 2.160e+02, 2.460e+02, 2.210e+02, 2.520e+02, 2.890e+02, 3.450e+02,
# 3.620e+02, 3.760e+02, 4.480e+02, 4.630e+02, 5.170e+02, 6.000e+02,
# 6.200e+02, 6.410e+02, 7.440e+02, 7.120e+02, 8.330e+02, 9.290e+02,
# 1.061e+03, 1.280e+03, 1.340e+03, 1.638e+03, 1.740e+03, 1.953e+03,
# 2.151e+03, 2.290e+03, 2.440e+03, 2.758e+03, 2.896e+03, 3.384e+03,
# 4.332e+03, 5.584e+03, 6.197e+03, 6.422e+03, 6.404e+03, 7.181e+03,
# 8.196e+03, 7.968e+03, 7.474e+03, 7.926e+03, 8.460e+03, 8.091e+03,
# 9.148e+03, 8.563e+03, 6.747e+03, 6.074e+03, 6.328e+03, 5.291e+03,
# 6.472e+03, 6.268e+03, 2.864e+03, 3.760e+02, 1.620e+02, 1.180e+02,
# 1.270e+02, 9.500e+01, 7.600e+01, 8.200e+01, 6.200e+01, 6.700e+01,
# 5.600e+01, 5.900e+01, 4.000e+01, 4.200e+01, 3.000e+01, 3.400e+01,
# 3.200e+01, 4.300e+01, 4.200e+01, 2.300e+01, 2.800e+01, 1.900e+01,
# 2.200e+01, 1.600e+01, 1.200e+01, 1.800e+01, 9.000e+00, 1.000e+01,
# 1.700e+01, 5.000e+00, 2.100e+01, 1.300e+01, 8.000e+00, 1.200e+01,
# 1.000e+01, 8.000e+00, 8.000e+00, 5.000e+00, 1.300e+01, 6.000e+00,
# 3.000e+00, 7.000e+00, 6.000e+00, 2.000e+00, 1.000e+00, 5.000e+00,
# 3.000e+00, 3.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 5.000e+00,
# 0.000e+00, 1.000e+00, 3.000e+00, 0.000e+00, 1.000e+00, 1.000e+00,
# 2.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
# 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]), array([0. , 0.00390625, 0.0078125 , 0.01171875, 0.015625 ,
# 0.01953125, 0.0234375 , 0.02734375, 0.03125 , 0.03515625,
# 0.0390625 , 0.04296875, 0.046875 , 0.05078125, 0.0546875 ,
# 0.05859375, 0.0625 , 0.06640625, 0.0703125 , 0.07421875,
# 0.078125 , 0.08203125, 0.0859375 , 0.08984375, 0.09375 ,
# 0.09765625, 0.1015625 , 0.10546875, 0.109375 , 0.11328125,
# 0.1171875 , 0.12109375, 0.125 , 0.12890625, 0.1328125 ,
# 0.13671875, 0.140625 , 0.14453125, 0.1484375 , 0.15234375,
# 0.15625 , 0.16015625, 0.1640625 , 0.16796875, 0.171875 ,
# 0.17578125, 0.1796875 , 0.18359375, 0.1875 , 0.19140625,
# 0.1953125 , 0.19921875, 0.203125 , 0.20703125, 0.2109375 ,
# 0.21484375, 0.21875 , 0.22265625, 0.2265625 , 0.23046875,
# 0.234375 , 0.23828125, 0.2421875 , 0.24609375, 0.25 ,
# 0.25390625, 0.2578125 , 0.26171875, 0.265625 , 0.26953125,
# 0.2734375 , 0.27734375, 0.28125 , 0.28515625, 0.2890625 ,
# 0.29296875, 0.296875 , 0.30078125, 0.3046875 , 0.30859375,
# 0.3125 , 0.31640625, 0.3203125 , 0.32421875, 0.328125 ,
# 0.33203125, 0.3359375 , 0.33984375, 0.34375 , 0.34765625,
# 0.3515625 , 0.35546875, 0.359375 , 0.36328125, 0.3671875 ,
# 0.37109375, 0.375 , 0.37890625, 0.3828125 , 0.38671875,
# 0.390625 , 0.39453125, 0.3984375 , 0.40234375, 0.40625 ,
# 0.41015625, 0.4140625 , 0.41796875, 0.421875 , 0.42578125,
# 0.4296875 , 0.43359375, 0.4375 , 0.44140625, 0.4453125 ,
# 0.44921875, 0.453125 , 0.45703125, 0.4609375 , 0.46484375,
# 0.46875 , 0.47265625, 0.4765625 , 0.48046875, 0.484375 ,
# 0.48828125, 0.4921875 , 0.49609375, 0.5 , 0.50390625,
# 0.5078125 , 0.51171875, 0.515625 , 0.51953125, 0.5234375 ,
# 0.52734375, 0.53125 , 0.53515625, 0.5390625 , 0.54296875,
# 0.546875 , 0.55078125, 0.5546875 , 0.55859375, 0.5625 ,
# 0.56640625, 0.5703125 , 0.57421875, 0.578125 , 0.58203125,
# 0.5859375 , 0.58984375, 0.59375 , 0.59765625, 0.6015625 ,
# 0.60546875, 0.609375 , 0.61328125, 0.6171875 , 0.62109375,
# 0.625 , 0.62890625, 0.6328125 , 0.63671875, 0.640625 ,
# 0.64453125, 0.6484375 , 0.65234375, 0.65625 , 0.66015625,
# 0.6640625 , 0.66796875, 0.671875 , 0.67578125, 0.6796875 ,
# 0.68359375, 0.6875 , 0.69140625, 0.6953125 , 0.69921875,
# 0.703125 , 0.70703125, 0.7109375 , 0.71484375, 0.71875 ,
# 0.72265625, 0.7265625 , 0.73046875, 0.734375 , 0.73828125,
# 0.7421875 , 0.74609375, 0.75 , 0.75390625, 0.7578125 ,
# 0.76171875, 0.765625 , 0.76953125, 0.7734375 , 0.77734375,
# 0.78125 , 0.78515625, 0.7890625 , 0.79296875, 0.796875 ,
# 0.80078125, 0.8046875 , 0.80859375, 0.8125 , 0.81640625,
# 0.8203125 , 0.82421875, 0.828125 , 0.83203125, 0.8359375 ,
# 0.83984375, 0.84375 , 0.84765625, 0.8515625 , 0.85546875,
# 0.859375 , 0.86328125, 0.8671875 , 0.87109375, 0.875 ,
# 0.87890625, 0.8828125 , 0.88671875, 0.890625 , 0.89453125,
# 0.8984375 , 0.90234375, 0.90625 , 0.91015625, 0.9140625 ,
# 0.91796875, 0.921875 , 0.92578125, 0.9296875 , 0.93359375,
# 0.9375 , 0.94140625, 0.9453125 , 0.94921875, 0.953125 ,
# 0.95703125, 0.9609375 , 0.96484375, 0.96875 , 0.97265625,
# 0.9765625 , 0.98046875, 0.984375 , 0.98828125, 0.9921875 ,
# 0.99609375, 1. ], dtype=float32), <BarContainer object of 256 artists>)
imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')
imgplot = plt.imshow(lum_img, clim=(0.0, 0.7))
imgplot = plt.imshow(lum_img)
plt.colorbar()
# Output:
# <matplotlib.colorbar.Colorbar object at 0x7f217c063ee0>
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
imgplot = plt.imshow(lum_img)
ax.set_title('Before')
plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
ax = fig.add_subplot(1, 2, 2)
imgplot = plt.imshow(lum_img)
imgplot.set_clim(0.0, 0.7)
ax.set_title('After')
plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
# Output:
# <matplotlib.colorbar.Colorbar object at 0x7f216dd16be0>
imgplot = plt.imshow(img, interpolation="nearest")
Recommend
Matplotlib Image tutorial Importing image data into Numpy arrays
Matplotlib Image tutorial Startup commands
Matplotlib Pyplot tutorial Logarithmic and other nonlinear axes
Matplotlib Pyplot tutorial Working with text Annotating text
Matplotlib Pyplot tutorial Working with text Using mathematical expressions in text
Matplotlib Pyplot tutorial Working with text
Matplotlib Pyplot tutorial Working with multiple figures and axes
Matplotlib Pyplot tutorial Controlling line properties
Matplotlib Pyplot tutorial Plotting with categorical variables
Matplotlib Pyplot tutorial Plotting with keyword strings
Matplotlib Pyplot tutorial Intro to pyplot Formatting the style of your plot
Matplotlib Pyplot tutorial Intro to pyplot
Matplotlib Basic Usage Working with multiple Figures and Axes
Matplotlib Basic Usage Color mapped data
Matplotlib Basic Usage Axis scales and ticks Additional Axis objects
Matplotlib Basic Usage Axis scales and ticks Plotting dates and strings
Matplotlib Basic Usage Axis scales and ticks Tick locators and formatters
Matplotlib Basic Usage Axis scales and ticks Scales
Matplotlib Basic Usage Labelling plots Legends
Matplotlib Basic Usage Labelling plots Annotations
Matplotlib Basic Usage Labelling plots Using mathematical expressions in text
Matplotlib Basic Usage Labelling plots Axes labels and text
Matplotlib Basic Usage Styling Artists Linewidths, linestyles, and markersizes
Matplotlib Basic Usage Styling Artists Colors
Matplotlib Basic Usage Styling Artists
Matplotlib Basic Usage Coding styles Making a helper functions
Matplotlib Basic Usage Coding styles The object-oriented and the pyplot interfaces
Matplotlib Basic Usage Types of inputs to plotting functions
Matplotlib Basic Usage Parts of a Figure Figure
Matplotlib Basic Usage A simple example
Matplotlib The Lifecycle of a Plot Saving our plot
Matplotlib The Lifecycle of a Plot Combining multiple visualizations
Matplotlib The Lifecycle of a Plot Customizing the plot
Matplotlib The Lifecycle of a Plot Controlling the style
Matplotlib The Lifecycle of a Plot Getting started
Matplotlib The Lifecycle of a Plot Our data
Customizing Matplotlib with style sheets and rcParams The matplotlibrc file
Customizing Matplotlib with style sheets and rcParams Using style sheets Temporary styling
Customizing Matplotlib with style sheets and rcParams Using style sheets Composing styles
Customizing Matplotlib with style sheets and rcParams Using style sheets Defining your own style
Customizing Matplotlib with style sheets and rcParams Using style sheets
Customizing Matplotlib with style sheets and rcParams Runtime rc settings Temporary rc settings
Customizing Matplotlib with style sheets and rcParams Runtime rc settings
Matplotlib origin and extent in imshow Explicit extent and axes limits
Matplotlib origin and extent in imshow Explicit extent
Matplotlib origin and extent in imshow Default extent
Matplotlib origin and extent in imshow
Matplotlib Autoscaling Working with collections
Matplotlib Autoscaling Controlling autoscale
Matplotlib Autoscaling Sticky edges
Matplotlib Autoscaling Margins
Matplotlib Constrained Layout Guide Notes on the algorithm Uneven sized Axes
Matplotlib Constrained Layout Guide Notes on the algorithm Colorbar associated with a Gridspec
Matplotlib Constrained Layout Guide Notes on the algorithm Two Axes and colorbar
Matplotlib Constrained Layout Guide Notes on the algorithm Simple case: two Axes
Matplotlib Constrained Layout Guide Notes on the algorithm Simple case: one Axes
Matplotlib Constrained Layout Guide Limitations Incompatible functions
Matplotlib Constrained Layout Guide Manually setting axes positions